Uranium-lead Isotopic Systematics of the Martian Meteorite Zagami

نویسندگان

  • L. E. Borg
  • Y. Asmerom
  • J. E. Edmunson
چکیده

Introduction: The crystallization age of Zagami has been well established by the Rb-Sr and Sm-Nd isochron techniques. Isotopic analysis on purified mineral fractions yield Rb-Sr ages of 178±3, 174±14, and 163±19 Ma [1-2], and a Sm-Nd age of 163±7 Ma [2]. Whole rock and leachate pairs have also been analyzed for U-Th-Pb isotopes and yield a Th-Pb age of 230±5 Ma and a U-Pb age of 229±8 Ma [3]. Chen & Wasserburg [3] interpreted the ~230 Ma UTh-Pb ages as the time of U-Th-Pb fractionation of an ancient reservoir. They hypothesized that this fractionation event was associated with shock metamorphism of a ~4.5 Ga rock. The goal of this study is to investigate the U-Pb isotopic systematics of Zagami in the context of the well defined Rb-Sr and Sm-Nd crystallization ages. Below preliminary results on Zagami maskelynite, pyroxene, and whole rock fractions are presented. These results demonstrate that the U-Pb isotopic system records both the age of formation of the Zagami source region and the age at which this source region was disturbed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami

Uranium-lead, Rb-Sr, and Sm-Nd isotopic analyses have been performed on the same whole-rock, mineral, and leachate fractions of the basaltic martian meteorite Zagami to better constrain the U-Pb isotopic systematics of martian materials. Although the Rb-Sr and Sm-Nd systems define concordant crystallization ages of 166 6 Ma and 166 12 Ma, respectively, the U-Pb isotopic system is disturbed. Nev...

متن کامل

Chemical and Isotopic Constraints for the Martian Crust

Introduction: The Martian meteorite whole rock Rb-Sr isotopic compositions and the initial Pb data from plagioclase separates suggest strongly that the crust of their parent body originated from an ancient planetary global differentiation process about 4.5 Ga ago. The absence of plate tectonic activity on early Mars excludes a crustal recycling and preserves the isotopic systems derived from th...

متن کامل

Signatures of the martian atmosphere in glass of the Zagami meteorite.

Isotopic signatures of nitrogen, argon, and xenon have been determined in separated millimeter-sized pockets of shock-melted glass in a recently identified lithology of the meteorite Zagami, a shergottite. The ratio of nitrogen-15 to nitrogen-14, which is at least 282 per mil larger than the terrestrial value, the ratio of xenon-129 to xenon-132 = 2.40, and the argon isotopic abundances match t...

متن کامل

The Pb isotopic evolution of the Martian mantle constrained by initial Pb in Martian meteorites

The Pb isotopic compositions of maskelynite and pyroxene grains were measured in ALH84001 and three enriched shergottites (Zagami, Roberts Massif 04262, and Larkman Nunatuk 12011) by secondary ion mass spectrometry. A maskelynite-pyroxene isochron for ALH84001 defines a crystallization age of 4089 ± 73Ma (2σ). The initial Pb isotopic composition of each meteorite was measured in multiple maskel...

متن کامل

THE AGE OF TISSINT: Sm-Nd & Rb-Sr ISOTOPE SYSTEMATICS OF A MARTIAN METEORITE FALL

Introduction: The recently acquired meteorite Tissint is the first recognized fall of a depleted shergottite. Other such shergottites were found in the hot deserts (e.g., NWA 1195, Dhofar 019, DAG 476) or in the Antarctic cold desert (e.g., QUE 94201, Y980459) and, in many cases, have disturbed isotopic systematics due to terrestrial contamination [1-4]. Tissint represents the freshest sample o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003